2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

19 видов льда

19 видов льда

Лёд взрывается, тонет в воде, проводит ток, генерирует мощное магнитное поле.

Мой друг в детстве приклеивал на капельку пластилина таракана на дно формочки для льда, заливал водой и замораживал. Потом швырял ледяные кубики с начинкой в стену и кричал «Я — Сабзиро!» А я всё время выбирал Глациуса в Killer Instinct, потому что изящный. В «Семиевии» из льда на астероиде построили реактивный двигатель и льдом же его топили. Ну и, конечно же, «Колыбель для кошки». А тем временем в реальности…

Аргоннская национальная лаборатория в 1980 придумала технологию ледяной гидросмеси (ice slurry), которая не образует ледяные наросты, не слипается, течет по трубам и в 5-7 раз эффективнее простой воды для охлаждения.

Микрокристаллы льда «ледяная кровь» хорошо проникают в маленькие кровеносные сосуды без вреда для клеткок. При остановке сердца время для спасения пострадавшего теоретически может увеличиться с 10 до 45 минут.

Д. Пайк предложил добавить в лед опилки и из этого композита (пайкерита) сделать… авианосец.

Чуток копнув, я узнал, насколько глубока ледяная кроличья нора.

Первопроходец в исследовании различных типов льда — Перси Уильямс Бриджмен, нобелевский лауреат по физике в 1946, он работал с высокими давлениями (до 10 ГПа), открыл/описал в 1912 году 5-6 видов льда.

«Правила льда»

Правила Бернала-Фаулера:

  • а) атом кислорода каждой молекулы Н2О связан с четырьмя соседними атомами водорода: с двумя атомами водорода ковалентной связью, с двумя соседними — посредством водородных связей (как это имеет место в кристаллической структуре льда);
  • б) на линии кислород — кислород может располагаться только один протон Н + ;
  • в) протон, участвующий в образовании водородной связи и находящийся между атомами кислорода имеет два равновесных положения и может находиться как вблизи своего атома кислорода на расстоянии приблизительно 1 A, так и вблизи соседнего атома кислорода на расстоянии 1,7 A, т.е. наряду с обычным димером HO-H. OH2 стабильной является также и ионная пара HO — + H-OH2. Состояние «протон около соседнего кислорода» характерно для границы раздела фаз, т.е. вблизи поверхности вода-твердое тело или вода-газ;
  • г) пространственная связь тройки О-Н… О, где чертой обозначена ковалентная связь, а точками — водородная, не может быть произвольной, а имеет четкую пространственную направленность.

Шесть возможных молекулярных ориентаций центральной молекулы воды в пентамере Вальрафена.

Эксперименты с величиной и скоростью изменения температуры и давления, а так же хитрости с графеном позволяют играться со структурой и ориентацией протонов, что порождает 19 экспериментально полученных и несколько теоретических видов льда.

Фазовая диаграмма и структуры льда.

Сводная таблица 19 видов льда.

Лёд 0

Теоретическая структура. Лед-0 может получиться при кристаллизации льда Iси льда Ih из переохлажденной воды.

Аморфный лёд

Фазовая диаграмма аморфных льдов и жидкой воды.

Лёд-Iaили LDA (Low-density amorphous ice)

Если жидкую воду охладить со скоростью порядка 1 000 000 К в секунду, то молекулы не успевают сформировать кристаллическую решётку и получается аморфный лед низкой плотности, («сверхохлаждённая стекловидная вода», HGW). Второй способ — сконденсировать водяной пар на сильно охлажденной подложке («аморфная твёрдая вода», ASW).

Лёд-Ia или HDA (High-density amorphous ice)

Аморфный лёд высокой плотности можно получить сдавливая лёд «обычный» Ih при температурах ниже 140 К.

VHDA (Very-high density amorphous ice)

Аморфный лёд очень высокой плотности (2001) получают нагревом HDA до 160 К при давлении 1-2 ГПа.

Интересное видео, как лёд из одной фазы тает в другую:

Лёд Ih

Обычный гексагональный (hexagon, поэтому Ih) кристаллический лёд. Почти весь лёд на Земле относится ко льду Ih, и лишь малая часть — ко льду Iс (сubic).

Лёд Iс (1987)

Ромбовидное расположение воды во льду Iс

Лёд-Isd

Stacking disordered ice

Кстати, лёд Isd был «открыт» при наблюдении за солнечным гало во время ледяных игл/«алмазной пыли»:

Читать еще:  Ультралайт для малых водоёмов

Треугольная снежинка из Isd

Лёд 2 (1900)

Получают лёд-II, сжимая лёд Ih при температурах от −83 °C до −63 °C (190—210 K) и давлении 300 МПа, или путём декомпрессии льда V при температуре −35 °C (238 K). При нагреве лёд-II преобразуется в лёд-III.

Предполагают, что «ледяные луны» например, Ганимед, могут быть изо льда-II.

Лёд 3

Можно получить при охлаждении воды до −23 °C (250 K) и давлении 300 МПа.

Лёд-III — наиболее просто получаемый и доступный для исследований лёд высокого давления. Впервые он был получен из обыкновенного льда при температуре −22 °C (температура тройной точки лёд Ih — лёд III — вода) путём повышения давления до 210 МПа

Лёд 4

Получают медленным нагревом (0,4 K/мин) аморфного льда высокой плотности от температуры 145 К при постоянном давлении 0,81 ГПа.

Лёд 5

Лёд-V производят охлаждением воды до 253 K (−20 °C) при давлении 500 МПа. Структура льда-V — самая сложная из всех фаз льда. Лёд V тает при 50 °С.

Лёд 6

Получают при охлаждении воды до −3 °C (270 K) и давлении 1,1 ГПа. В нём проявляется дебаевская релаксация. Лёд VI тает при температуре 81 ºС (355 K) при 2,216 ГПа и при температуре около 0 ºС при 0,6 ГПа.

Монокристалл льда VI

Кристаллизация воды в тетрагональный лёд VI при комнатной температуре и давлении 0.9 ГПа.

Рост кристалла при трапецеидальном давлении.

Рост кристалла при синусоидальном давлении.

Лёд 7 (1969)

Самый неупорядоченный лёд, в нем не только атомы водорода, но и атомы кислорода не упорядочены.

Можно получить из воды под давлением 3 ГПа при охлаждении до комнатной температуры. Так же получается изо льда VI при увеличении давления при комнатной температуре.

Лёд 8

Упорядоченная версия льда-VII, в котором водород зафиксирован. Получается изо льда-VII при его охлаждении ниже 5 °C.

Лёд 9 (1973)

Лёд-IX — метастабильная форма твёрдой воды при температурах ниже 140 K и давлении 200-400 МПа. Получается изо льда III при охлаждении.

Лёд 10 (1984)

Симметричный лёд с упорядоченным расположением протонов. Образуется при давлениях около 70 ГПа.

Структура льда-X (слева верх) и предсказанные вариации Pbcm, Pbca, Cmcm.

Лёд 11 (1972)

Лёд-XI — это самая устойчивая конфигурация льда Ih с упорядоченной ориентацией протонов. Является сегнетоэлектриком (спонтанная поляризация, которую можно менять внешним электрическим полем).

Лёд 12 (2003)

Получается охлаждением воды до −13 °C (260 K) при давлении 0,55 ГПа. Так же лёд-XII можно получить изо льда Ih при температуре 77 K быстрым сжатием 1 ГПа/мин или нагреть аморфного льда высокой плотности до 183 К при давлении 0,8-1,6 ГПа.

Лед 13

Протонно-упорядоченная вариация льда-V. Получается при охлаждении воды до 130K при давлении 500 МПа.

Лёд 14 (2006)

Модификация льда-XII, где протоны расположены упорядоченно. Образуется при заморозке воды при температуре 118 K и давлении 1,2 ГПа.

Лед 15 (2009)

Лёд-XV — форма льда-VI с упорядоченными протонами, получается при охлаждении воды до 130 К при давлении 1 ГПа.

а) фазовая диаграмма льда с некоторыми маршрутами, используемыми для изучения упорядоченной формы льда и б) как молекула воды изменяется при переходе от неупорядоченной формы льда к упорядоченной.

Лёд 16 (2014)

Лёд-XVI имеет наименьшую плотность среди всех видов льда 0,81 г/см 3 , топологически эквивалентен КС-II (газовые гидраты). Получается путём удаления молекул газа из клатрата неона в вакууме при температуре ниже 147 К.

Фазовая диаграмма воды, расширенная до отрицательных давлений.

Лёд 17 (2015)

Квадратный лед получается если зажать воду между двумя слоями графена (1 нанометр) при комнатной температуре (Андрей Гейм подсчитал, что давление там примерно 10 000 атмосфер). Возможно, встречается в природе в трещинах камней и почвы.

Лёд 18 (2019)

Супер-ионный лёд в четыре раза плотнее обычного льда и обладает электропроводимостью.

Читать еще:  Есть такая профессия – егерь

Лед-XVIII или суперионная вода может существовать при очень высоких давлениях 50-100 ГПа (удар лазерного импульса в ячейке с алмазными наковальнями) и температуре. Молекулы распадаются на ионы. Ионы кислорода формируют гранецентрированную кубическую решетку, а ионы водорода хаотично диффундируют внутри нее.

Фазовая диаграмма супер-ионного льда: объёмно-центрированный ионный лёд (синий), гранецентрированный/плотноупакованный (зелёный) и ионный лёд P21/c. Серый — кристаллический лед, жёлтый — область ионной жидкости.

Лед 19 (2021)

Различия в дифракционных картинах и строении кристаллической решетки льда-VI и льда-XIX

Если ко льду-VI применить давление от 0,88 до 2,20 гигапаскалей, то образуется лед-XV, и новый лед-XIX. Если проанализировать диэлектрическую проницаемость и нейтронную дифракцию, то придем к выводу о самостоятельности новой фазы.

Арктический регион расположен между Северным полюсом и Северным полярным кругом. Он простирается на территории восьми государств, в том числе России. Страны регулярно собираются на Арктический совет и разрабатывают стратегии по сохранению региона, но ситуация с ледниками все равно тревожная — они тают даже быстрее, чем предсказывали ученые.

По словам гляциолога Дианы Владимировой, даже небольшое таяние морского льда в Арктике меняет циркуляцию в океане и атмосфере — и последствия мы буквально ощущаем на себе. Так было летом 2019 года, когда россияне в июле кутались в пальто, а во Франции люди страдали от аномальной жары.

Диана Владимирова, гляциолог, кандидат географических наук, научный сотрудник Института географии РАН:

«Стихийные бедствия и погодные аномалии происходят всё чаще. Ураганы в США, лесные пожары в Сибири и Австралии, летние снегопады, засухи — мы уже живем с этими последствиями глобального потепления, не нужно ждать десятки лет, чтобы их заметить. Надеюсь, что международные соглашения вроде Парижского помогут глобально снизить выбросы парниковых газов в атмосферу и, соответственно, сдержать глобальное потепление. Если глобальная климатическая система отреагирует на такие изменения, частота опасных природных явлений снизится».

Ледники Гренландии вызовут массовую миграцию

Гренландия — второй на планете после Антарктиды ледяной щит. По площади (1 710 000 кв. км) он больше, чем Франция, Испания и Германия вместе взятые. Исследования показывают, что через 200 лет тающий щит повысит уровень Мирового океана на 48–160 см. А уже к концу XXI века могут быть затоплены не только ближайшие к арктическому побережью объекты инфраструктуры (порты, аэропорты, дороги), но и целые города. По подсчетам ученых, это представляет угрозу для 400 млн людей.

Тающие ледники не так далеко, как кажется, — 70% населения Земли проживают в пределах 160 км от побережья, а значит, зависят от уровня Мирового океана. Если весь лед на полюсах и горных вершинах растает, под водой окажется значительная часть Европы, включая Санкт-Петербург.

На более оптимистичный сценарий пока рассчитывать не приходится: в 2020 году сотрудники Центра полярных и климатических исследований им. Берда подтвердили, что ледники Гренландии прошли точку невозврата. Это значит, что люди уже не смогут повлиять на повышение уровня Мирового океана — только смягчить последствия и подготовиться к миграции.

«Даже если климат останется прежним или станет немного холоднее, ледяной щит все равно будет терять массу», — отмечает Микалеа Кинг, ведущий автор исследования.

Исландия хоронит свои ледники

Исландия в переводе значит «страна льдов», но с каждым годом территория все меньше соответствует названию. Так, в августе 2019 года здесь официально похоронили ледник Окйокуль. Площадь соседних ледников также уменьшается, и через 200 лет ожидается полная «разморозка» острова.

По словам министра окружающей среды и природных ресурсов Исландии Гудмундура Инги Гудбрандссона, таяние ледников приведет к серьезным экологическим и экономическим проблемам: к изменению флоры и фауны, повреждению коммуникаций и инфраструктуры, спаду туризма, рыболовства и сельского хозяйства, а также к повышению риска извержений вулканов, которые «дремлют» в ледниках. Кроме того, это может негативно сказаться на эмоциональном состоянии исландцев, ведь гордость страны буквально исчезает у них на глазах.

Читать еще:  В межсезонье — за травами

Документальная короткометражка «После льда» наглядно показывает, как исландские ледники уменьшаются с годами:

Вечная мерзлота нагревает планету

Глобальное потепление привело к тому, что нагревается и обнажается даже арктическая вечная мерзлота — часть верхнего слоя земной коры, которая в норме никогда не должна оттаивать. Из-за этого в атмосферу выбрасываются парниковые газы — CO2 и метан. Они, в свою очередь, еще больше «подогревают» планету и приводят к большему таянию ледников.

Когда оттаявший грунт буквально уходит из-под ног, повреждаются дороги, газопроводы, здания и другие объекты. По прогнозу сотрудников Университета Джорджа Вашингтона, к 2050 году будет разрушено как минимум 25% инфраструктуры северных городов России. А на Аляске ущерб от таяния вечной мерзлоты и выброса парниковых газов к 2099 году оценили в $5,5 млрд.

Опасения вызывают и «просыпающиеся» после размораживания бактерии и вирусы. На Ямале уже наблюдали вспышку сибирской язвы — возможно, ее вызвало тело зараженного оленя, которое оттаяло спустя 75 лет после захоронения. Биологи предполагают, что в недрах земли могут скрываться патогены, которые в прошлом вызывали эпидемии испанского гриппа, оспы и бубонной чумы. А исследователи из США уже обнаружили в образцах льда 33 вирусных популяции, 28 из которых ранее не были известны.

Диана Владимирова, гляциолог, кандидат географических наук, научный сотрудник Института географии РАН:

«Вирусы действительно оттаивают, но внимание нужно обратить скорее на борьбу с последствиями. На примере коронавируса мы убедились, как важно вкладывать средства в центры вирусологии, центры изучения и производства вакцин. Образцы бактерий и вирусов уже можно добывать из вечной мерзлоты, а значит, подготовиться до того, как они растают, попадут в воду, почву, животных и людей».

Материалы по теме

Тепловой удар

Между нами тает лед

ООН предупредила: к 2030 году мировая экономика будет терять более двух триллионов долларов в год из-за снижения производительности труда, поскольку глобальное потепление настолько изменит климат, что некоторые виды работ станут невозможны из-за слишком высоких температур воздуха. Экстремальная жара скажется в первую очередь на работах, связанных с тяжелым ручным трудом в сельском хозяйстве и на производстве. Учитывая, что ручной труд сейчас используется чаще в слаборазвитых странах, они станут еще беднее от снижения его производительности.

«Наука говорит ясно: мы должны ограничить повышение глобальных температур полутора градусами к концу столетия. А наш долг еще более ясен: мы должны защитить людей и сообщества, которые страдают от изменения климата. Мы должны ускорить подготовку к нарастающим последствиям климатического кризиса во имя международного мира и безопасности», — говорил генеральный секретарь ООН Антониу Гутерриш.

Если загрязнение воздуха продолжится такими темпами, к 2100 году лето в Северном полушарии, и в России в частности, может длиться до полугода, а зима — менее двух месяцев. Это может привести к катастрофическим последствиям для экологии, сельского хозяйства и здоровья людей.

5. Пострадает биоразнообразие

Таяние вечной мерзлоты приводит к тому, что более южные представители флоры и фауны начинают всё сильнее захватывать северные территории, вытесняя эндемичные виды, то есть те, которые обитают на относительно ограниченном ареале.

Проблема в том, что большинство видов взаимосвязаны между собой, и часть из них живёт в симбиозе друг с другом. Когда один из видов пропадает — нарушается пищевая цепочка или нормальное функционирование другого вида, вследствие чего страдает вся экосистема. Так, например, таяние вечной мерзлоты приводит к тому, что белые медведи всё чаще появляются в северных городах в поисках пропитания из-за того, что их традиционный источник пищи — нерпы, моржи и другие морские животные — уходят севернее.

Ссылка на основную публикацию
Статьи c упоминанием слов:

Наш сайт использует файлы cookies, чтобы улучшить работу и повысить эффективность сайта. Продолжая работу с сайтом, вы соглашаетесь с использованием нами cookies и политикой конфиденциальности.

Принять
Adblock
detector